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Statistical data on the scalar-field gradient obtained by means of direct numerical simulation of turbulence is
used in the present paper to predict the form of the specific area of the isoscalar surface at different stages
of evolution of a turbulent flow. From the available literature data on the conditional scalar dissipation rate
a suggestion of the form of typical realizations of the turbulent field at different stages of its evolution is
made and on this basis the form of the scalar gradient probability density on the isoconcentric surface is pro-
posed. Using this quantity and the idea that the turbulent scalar field is multiscale in nature, it is possible to
calculate the dependence of the specific area of equal concentration on the scalar value at the initial, inter-
mediate, and final stages of turbulent mixing. The results of the present work are compared with the results
of other theoretical approaches to the calculation of the surface area of equal concentration.

Introduction. The investigation of turbulent combustion is an important topic for many practical applications.
The flames of rocket and aircraft engines are turbulent, combustion in internal combustion engines is realized in the
turbulent regime, and the main methods of obtaining energy in industry are associated with turbulent combustion. In
describing it, many problems that are still far from being completely solved arise. The current approaches to its inves-
tigation are associated with flames that are far from the chemical equilibrium state. The most important approach to
the modeling of combustion with allowance for the deviation from the state of chemical equilibrium is based on the
assumption that the turbulent flame can be considered as an ensemble of one-dimensional thin reaction zones (flame-
lets), and each zone is in a locally laminar mixed environment (laminar diffusion flamelet model). The development of
theoretical models of turbulent combustion that take into account the nonequilibrium effects requires deep knowledge
of the statistical properties of the scalar-field gradient. Relatively detailed information on the statistics of the scalar-
field gradient is contained in the combined probability density (CPD) of the fluctuation values of the scalar field and
its gradient. For this function, by different techniques an equation was derived [1–5]. However, its solution to a degree
permitting its practical use has not been found. The main difficulty encountered in attempting to solve the equations
for the CPD is associated with their multidimensionality. In this connection, the desire to obtain information on the
moments of this function, which are important for developing the theory of turbulent combustion, arises. The second-
order CPD moment is the dissipation rate of scalar fluctuations on the isoscalar surface. Suffice it to say that this
function is indispensable for solving the equation for the single-point probability density of the scalar in a turbulent
reacting flow [6, 7]. The equation for the second-order CPD moment was obtained in [8]. In attempting to solve it
numerically, serious difficulties were revealed, since this equation in the space of scalar values in describing the mix-
ing process models the shrinkage of the values of scalar fluctuations to zero. Formally it appears as the presence in
the equation of a term with negative diffusion. It is known that the numerical realization of such a calculation leads
to the appearance of instability. Although this problem is, in principle, soluble, it requires a special approach and
much effort [9].

Analogous difficulties arise in deriving and attempting to solve the equation for the first-order CPD moment
by the gradient variable. This moment is nothing but the specific area of the isoscalar surface [10]. The notion of the
flame area had been used before in early combustion models. However, the equation for this quantity was proposed
for the first time in [11], where it was suggested that the combustion of non-mixed reactants at an early stage was
controlled by the competition between the deformation of the flame elements and the mutual annihilation of the flame
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area due to the destruction of its adjacent elements. The advantage of the flame model based on the equation for the
surface area is that it is used to relate the analysis of a separate flamelet and the global turbulent field.

Given the calculated flame surface area Στ(Γ), we can easily calculate the mean heat release rate per unit vol-
ume or the reactant flow rate by the formulas

W = Q Στ (Γ) ,   Wτ = − 
Q

∆hτ
 Στ (Γ) . (1)

The main difficulty in finding Στ(Γ) is associated with the closure of the equation of [12] and its numerical
solution [10]. To close individual terms of this equation, one normally uses the results of direct numerical simulation
of the turbulent scalar-field [13]. Then, using the thus-closed equation, we shall attempt to obtain the form of this
function at all times.

In the present paper, an attempt is made to elucidate the form of the isoscalar surface specific area at some
instants of the scalar-field evolution, using the known literature results concerning the statistics of the scalar-field gra-
dient without solving the equation for this quantity. In [14], on the basis of the results of direct numerical simulation
a form of the conditional scalar dissipation rate of the intensity of scalar fluctuations at different stages of turbulent
mixing was proposed. Using this information, we can attempt to reconstruct the conditional probability density of the
scalar gradient and calculate the specific area of the isoscalar surface. We can associate each dependence of the con-
ditional scalar dissipation value given in [14] with a typical realization of the scalar field [15], which is the source of
such a dependence. Then, using this typical realization, we can calculate the scalar-field gradient and obtain the corre-
sponding gradient probability density at a given value of the scalar. Given such a function and using the notions of
the multiscale character of the turbulent mixing process, we can calculate the value of the isoscalar surface for a given
stage of evolution of the turbulent scalar field.

In [14], information on the form of the conditional dissipation rate χτ(Γ) is given for separate time intervals
of the scalar-field evolution. These intervals correspond to the initial stage where the scalar-field dispersion amounts to
50% of its initial value (σ(τ) ⁄ σ(0) = 0.5), the intermediate stage where the dispersion amounts to about 20% of its in-
itial value (σ(τ) ⁄ σ(0) = 0.2), and the final stage where the dispersion amounts to 5% of its initial value
(σ(τ) ⁄ σ(0) = 0.05). To find the time intervals τ corresponding to the above stages of evolution of the turbulent scalar
field, we write the form of the single-point probability density of the scalar-field values in the form [16]

fτ (Γ) = 
1

√π
 

τ1 ⁄ 2

Γ  ln Γ  3 ⁄ 2
 exp 




− 

τ

 lnΓ





(2)

and use it to calculate the dispersion evolution

Fig. 1. Evolution of dispersion.
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σ (τ) = ∫ 

−1

1

Γ2
 fτ (Γ) dΓ , (3)

which is given in Fig. 1. Using this dependence, it can easily be shown that to the initial stage there corresponds the
time τ1 = 0.3, to the intermediate stage there corresponds the time τ2 C 0.7, and to the final stage — τ3 C 1.9. The di-
mensionless time τ is measured in the characteristic time intervals equal to the time of diffusion mixing on the scale
of length l:

τ = 
t

l
2 ⁄ (3D)

 . (4)

1. Area of the Nonscalar Surface at the Initial Stage of Evolution of the Turbulent Scalar Field. As
shown in [14], by means of direct numerical simulation of turbulence in the initial period of turbulent flow evolution,
where the dispersion of scalar-field fluctuations constitutes about 50% of its initial value, the function of the condi-
tional scalar dissipation rate χτ(Γ), i.e., of the dissipation rate realized on the surface c(x, τ) = Γ, demonstrates a para-
bolic form with a maximum at small values of scalar fluctuations. Such a form of the function of the conditional
scalar dissipation rate is expected in the case where the scalar field consists essentially of diffusion layers separating
the ranges of approximate homogeneity. If we choose a local system of coordinates with the OX axis directed perpen-
dicular to the diffusion layer, then, as a typical realization of a scalar field with a fixed wavelength λ, a sinusoid with
a time-decaying amplitude can serve. Such a field can be described by the formula

c1 (x, τ) = exp 



− 

τ

2λ2



 sin 



x

λ



 . (5)

The dispersion of the random scalar field c1(x, τ) is of the form

σ1 (τ) = 
1

2π
  ∫ 

0

2π

 c1 (x, τ)2
 dx = 

1

√2
 exp 




− 

τ

2λ2



 . (6)

The scalar gradient field can be calculated, taking a derivative of the expression for c1(x, τ) with respect to x:

z1 (x, τ) = 
1

λ
 exp 




− 

τ

2λ2



 cos 



x

λ



 . (7)

At a given level of the scalar-field value c(x, τ) = Γ the scalar-field gradient z1(x, Γ) can take on two different
values:

zi (Γ) = 
1

λ
 exp 




− 

τ2

2λ2




 cos ϕi (Γ) ,     i = 1, 2 .

(8)

As seen from Fig. 2, the values of the angles ϕ1(Γ) and ϕ2(Γ) are related by the relation

ϕ2 (Γ) = π − ϕ1 (Γ) . (9)

The value for ϕ1(Γ) is determined by the ratio of the field value c(x, τ) = Γ at a given point to the maximum value
of this field at time τ equal to exp (−τ ⁄ 2λ2). Thus,
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ϕ1 (Γ) = arcsin 
Γ

exp 



− 

τ

2λ2




 = arcsin 



Γ exp 





τ

2λ2







 . (10)

Using equality (8), we can write the expression for the conditional probability density of the field gradient values:

Pτ (WΓ)  = 
1

2
 


δ [W − z1 (Γ)] + δ [W − z2 (Γ)]



 Θ 




1 − Γ  exp 





τ

2λ2







 . (11)

The Heaviside function Θ 



1 − Γ  exp 





τ
2λ2








 in (11) reduces Pτ(WΓ)  to zero beyond the domain of its existence:

Γ  < exp 



− 

τ

2λ2



 . (12)

The values of the scalar-field gradient at ϕ1(Γ) and ϕ2(Γ) are equal in magnitude but opposite in sign. Since for our
purposes only the probability density of the gradient magnitude is important, for Pτ(WΓ)  we can write

Pτ (WΓ ) = δ [W − z1 (Γ)] Θ 



1 − Γ   exp 





τ

2λ2







 . (13)

Using formula (7) for ϕ1(Γ), we obtain

Pτ (WΓ ) = δ 



W − 

1

λ
 exp 




− 

τ

2λ2



 cos ϕ1 (Γ)




 Θ 




1 − Γ  exp 





τ

2λ2







 =

= δ 



W − 

1

λ
 exp 




− 

τ

2λ2



 cos 




arcsin exp 





τ

2λ2



 Γ








 Θ 




1 − Γ  exp 





τ

2λ2







 =

= δ 



W − 

1

λ
 exp 




− 

τ

2λ2



 



1 − exp 





τ

λ2



 Γ2




1 ⁄ 2
 



 Θ 




1 − Γ  exp 





τ

2λ2







 . (14)

Fig. 2. Realization of the scalar field c(x, τ) and its gradient z(x, τ) at the in-

itial stage of evolution 
σ(τ)
σ(0)

 C 0.5.
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The formula for calculating the specific area of the surface in a turbulent flow with a given scale of λ is of the form

Στ (Γ, λ) = ∫ 
0

∞

WPτ (W Γ) fτ (Γ, λ) dW . (15)

Using (14), we obtain

Στ (Γ, λ) = 
1

λ
 exp 




− 

τ

2λ2



 



1 − exp 





τ

λ2



 Γ2




1 ⁄ 2
 fτ (Γ, λ) Θ 




1 −  Γ  exp 





τ

2λ2







 . (16)

The symbol λ in the argument of the functions Στ(Γ, λ) and fτ(Γ, λ) denotes that they have been calculated in
a single-scale approximation, i.e., under the assumption that the scalar turbulent field is sinusoidal with a wavelength
λ. In this approximation, the function fτ(Γ, λ) can be given in the form [16]

fτ (Γ, λ) = exp 




τ

λ2



 f0 




Γ exp 





τ

λ2







 . (17)

Here f0(Γ) is the form of the probability density function at the initial instant of time. The choice of this form is
largely arbitrary. In the case where the initial scalar field is totally segregated, the function

f0 (Γ) = 
1
2

 [δ (Γ − 1) + δ (Γ + 1)] .

Then for fτ(Γ, λ) we obtain

fτ (Γ, λ) = 
1

2
 



δ 




Γ exp 





τ
λ2




 + 1




 + δ 




Γ exp 





τ

λ2



 − 1








 exp 





τ

λ2



 . (18)

With the use of this formula, taking into account the symmetry in Γ and −Γ, the single-scale specific area of the sur-
face will be given by the expression

Στ (Γ, λ) = 

exp 




τ
2λ2





λ
 



1 − exp 





τ
λ2




 Γ2




1 ⁄ 2

 δ 



Γ exp 





τ

λ2



 − 1




 Θ 




1 − Γ  exp 





τ

2λ2







 . (19)

To write the specific surface function, which will hold for the multiscale field, it is necessary to average the expres-
sion for Στ(Γ, λ) over the distribution of the length scales P(λ), which was chosen in the following form [16]:

P (λ) = 2λ exp (− λ2) . (20)

Then

Στ (Γ) = ∫ 

0

∞

Στ (Γ, λ) P (λ) dλ = 2 ∫ 

0

∞

exp 




τ

2λ2
 − λ2



 



1 − exp 





τ

λ2



 Γ2




1 ⁄ 2
 ×

× Θ 



1 − Γ  exp 





τ

2λ2







 δ 




Γ exp 





τ

λ2



 − 1




 . (21)
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We take into account the presence in the integrand in (21) of a Dirac δ-function and realize integration with
respect to the variable λ. We make use of the following formulas of [17] (p. 31, formula (6.5)):

δ [ϕ (x)] =  ∑ 
s

 
δ (x − xs)

 ϕ′ (xs)
 . (22)

Here xs denotes the simple roots of the equation

ϕ (x) = 0 (23)

lying in the interval under consideration. In our case,

ϕ (λ) = Γ exp 




τ

λ2



 − 1 . (24)

Solving Eq. (23) for this case, we obtain

Γ  exp 




τ

λ2



 − 1 = 0 , (25)

which is equivalent to the equation

exp 




τ

λ2



 = 

1

Γ
 . (26)

The calculation of the logarithm of the left- and right-hand sides yields

τ

λ2
 = ln 

1

 Γ
 . (27)

We take into account that  Γ  < 1:

λ2
 = 

τ

 ln Γ
 . (28)

Consequently,

λ1,2 = % √ τ

 ln Γ
 . (29)

We find the value of the derivative ϕ′(λ):

ϕ′ (λ) = − 
2τ

λ3 Γ  exp 




τ

λ2



 . (30)

Using (29) and taking into consideration (26), we obtain

 ϕ′ (λ1,2)  = 
2 lnΓ  3 ⁄ 2

τ1 ⁄ 2
 . (31)

The account of (22) for Στ(Γ) yields
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Στ (Γ) = 2 
1

Γ  1 ⁄ 2
 exp 




− 

τ

 lnΓ




 

1 − 

1

Γ
 Γ2




1 ⁄ 2
 

τ1 ⁄ 2

2 lnΓ  3 ⁄ 2
 Θ 


1 − Γ  

1

 Γ 1 ⁄ 2



 . (32)

Thus, the expression for the specific area of the isoscalar surface at the initial stage of turbulent scalar-field
evolution is of the form

Στ
(I)

 (Γ) = 
τ1 ⁄ 2 (1 − Γ) 1 ⁄ 2

 Γ 1 ⁄ 2  lnΓ 3 ⁄ 2
 exp 




− 

τ

 ln Γ




 Θ (1 −  Γ 1 ⁄ 2) . (33)

2. Area of the Isoscalar Surface at the Intermediate Stage of Evolution. At intermediate times, as shown
by means of direct numerical simulation in [14], the conditional scalar dissipation function χτ(Γ) turns out to be al-
most flat. This corresponds to the time where the scalar-field dispersion constitutes 20% of its initial value. Such a
form of the function of the conditional scalar dissipation rate can be expected in the case where the scalar field con-
sists essentially of curves resembling a saw whose edges represent rectangular portions. The assumed form of the sca-
lar-field realization typical of the intermediate stage of evolution is shown in Fig. 3.

Exactly such a form of the scalar field leads to the dependence of the conditional dissipation rate on the value
of the scalar field on the major portion of the c(x, τ) curve. In this case, the analytical expression for the scalar field
is of the form

c2 (x, τ) = √ 3

2
 exp 




− 

τ

2λ2



 

















2
π

 
x
λ

 ,

a sin 

ω 

x
λ




 ,

− 
2
π

 
x
λ

 ,

a sin 



ω 





x
λ

 − 
3π
2








 ,

     

− 
π
2

 + δ < 
x
λ

 < 
π
2

 − δ ,

π
2

 − δ < 
x
λ

 < 
π
2

 + δ ,

π
2

 + δ < 
x
λ

 < 
3π
2

 − δ ,

3π
2

 − δ < 
x
λ

 < 
3π
2

 + δ .

(34)

The value of δ should be chosen small (σ → 0). The parameters a and ω are calculated by the formulas

a = 1 − 
δ
π

 ;     ω = √ 2
πδ

(35)

Fig. 3. Realization of the scalar field c(x, τ) and its gradient z(x, τ) at the in-

termediate stage of evolution 
σ(τ)
σ(0)

 C 0.2.
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and are chosen so that the expressions for c2(x, τ) and its first derivative are continuous at points 
x
λ

 = 
π
2

 % δ and

x
λ

 = 
3π
2

 % δ. The smooth connection of the rectangular portions of the c2(x, τ) curve with opposite gradients is ex-

plained by the fact that the sharp gradients in the turbulent flow are smoothed due to the action of the molecular
mechanism of diffusion. In this case, the field of the scalar gradient is described by the expression

z2 (x, τ) = 
1

λ
 √ 3

2
 exp 




− 

τ

2λ2



 

















2
π

 ,

aω cos 

ω 

x
λ




 ,

− 
2
π

 ,

aω cos 



ω 





x
λ

 − 
3π
2








 ,

     

− 
π
2

 + δ < 
x
λ

 < 
π
2

 − δ ,

π
2

 − δ < 
x
λ

 < 
π
2

 + δ ,

π
2

 + δ < 
x
λ

 < 
3π
2

 − δ ,

3π
2

 − δ < 
x
λ

 < 
3π
2

 + δ .

(36)

If the level of the scalar field c(x, τ) = Γ, where

Γ  < c1 = √ 3

2
 exp 




− 

τ

2λ2



 



1 − 

2δ

π




 , (37)

then, as seen from Fig. 3, the scalar-field gradient z2(x, τ) assumes only two values:

z2 (x, τ) = % 


3

2





1 ⁄ 2
 

2

πλ
 exp 




− 

τ

2λ2



 . (38)

Only in a narrow range of values of the scalar-field where

c1 (x, τ) <  Γ  < c2 (x, τ) , (39)

where c1(x, τ) is given by formula (37) and

c2 (x, τ) = 


3

2





1 ⁄ 2
 exp 




− 

τ

2λ2



 



1 − 

δ

π




 , (40)

can the field gradient assume values determined by the second and fourth lines in (36):

z2 (x, τ) = % 


3

2





1 ⁄ 2
 exp 




− 

τ

2λ2



 
1

λ
 aω cos 


ω 

x

λ



 . (41)

We now express the value of cos


ω 

x
λ




 in terms of c2(x, τ). This can be done by making use of the second line in

(34):

c2 (x, τ) = 


3

2





1 ⁄ 2
 exp 




− 

τ
2λ2




 a sin 


ω 

x

λ



 . (42)

Hence

sin 



ω 

x

λ



 = 

c2 (x, τ)





3

2





1 ⁄ 2
 exp 




− 

τ

2λ2



 a

 . (43)
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We express cos 

ω 

x
λ




 in terms of sin 


ω 

x
λ




:

cos 



ω 

x

λ



 = 




1 − sin

2
 



ω 

x

λ








1 ⁄ 2

 = 










1 − 
c2

2
 (x, τ)

3

2
 exp 




− 

τ

λ2



 a

2











1 ⁄ 2

 . (44)

Using this expression in the formula for z2(x, τ) and invoking formulas (35) for α and ω, we obtain

z2 (x, τ) = 




3

2





1 ⁄ 2

 exp 



− 

τ

2λ2




 
1

λ
 



1 − 

δ

π




 


2

πδ




1 ⁄ 2
 











1 − 
c2

2
 (x, τ)

3

2
 exp 




− 

τ

λ2



 



1 − 

δ

π





2












1 ⁄ 2

  . (45)

By transformation and replacement of c(x, τ) for Γ we find

z2 (x, τ) = 


3

πδ




1 ⁄ 2
 exp 




− 

τ

2λ2



 
1

λ
 



1 − 

δ

π




 













1 − 

2Γ2
 exp 





τ
λ2





3 



1 − 

δ
π





2













1 ⁄ 2

  . (46)

Having used formulas (37)–(40) and (46), we write the expression for the conditional probability density of the scalar
gradient value

Pτ (WΓ)  = 
1
2

 Θ (c1 −  Γ)  [δ (W − z2) + δ (W + z2)] +

+ 
1
2

 [Θ ( Γ  − c1) Θ (c2 − Γ ] [δ (W − z2) + δ (W + z2)] (47)

or, writing in detail and taking into account that we are only interested in the scalar gradient value, we obtain

Pτ (W Γ) = Θ 














3

2





1 ⁄ 2 exp 



− 

τ

2λ2



 



1 − 

2δ

π




 − Γ











 δ 










W − 


3

2





1 ⁄ 2 
2

πλ
 exp 




− 

τ

2λ2














 +

+ 










Θ 










 Γ  − 


3

2





1 ⁄ 2 exp 



− 

τ

2λ2



 



1 − 

2δ

π















 − Θ 














3

2





1 ⁄ 2 exp 



− 

τ

2λ2



 



1 − 

δ

π




 − Γ





















 ×

× 















δ 














W − 


3

πδ




1 ⁄ 2 exp 



− 

τ

2λ2



 
1

λ
 



1 − 

δ
π




 













1 − 

2Γ2
 exp 





τ

λ2




3 



1 − 

δ
π





2













1 ⁄ 2

 




























 .
(48)
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We now make use of formula (48) and calculate Στ(Γ), whose value is given by formula (15). The expression for the
surface area in the single-scale approximation, taking into account the formula for  Pτ(W Γ), upon integration with re-
spect to W will take on the form

Στ (Γ, λ) = 
1

λ
 


3

2





1 ⁄ 2
 
2

π
 exp 




− 

τ

2λ2



 exp 





τ
λ2




 δ 




Γ exp 





τ

λ2



 − 1




 ×

× Θ 














3

2





1 ⁄ 2 exp 



− 

τ

2λ2



 



1 − 

2δ

π




 − Γ











 + 
1

λ
 


3

πδ




1 ⁄ 2
 exp 




− 

τ
2λ2




 ×

× 



1 − 

δ

π




 













1 − 

2Γ2
 exp 





τ

λ2




3 



1 − 

δ
π





2













1 ⁄ 2

 exp 




τ
λ2




 δ 




Γ exp 





τ

λ2



 − 1




 ×

× 







Θ 







 Γ  − √ 3

2
 exp 




− 

τ

2λ2



 



1 − 

2δ

π











 − Θ 






√ 3

2
 exp 




− 

τ

2λ2



 



1 − 

δ

π




 −  Γ














 . (49)

As in deriving the multiscale model for the initial stage of evolution, we turn to the multiscale model by av-
eraging Στ(Γ, λ) over the scales of length λ with weight P(λ) given by formula (20):

Στ (Γ) = ∫ 

0

∞

Στ (Γ, λ) P (λ) dλ = 2 ∫ 

0

∞

exp 




τ

2λ2 − λ2


 
√ 6

π
 Θ 









3

2





1 ⁄ 2
 exp 




− 

τ

2λ2



 



1 − 

2δ

π




 −  Γ




 ×

× δ 



Γ exp 




− 

τ

λ2



 − 1




 dλ + 2 ∫ 

0

∞

exp 




τ

2λ2 − λ2


 


3

πδ




1 ⁄ 2
 



1 − 

δ

π




 













1 − 

2Γ2
 exp 





τ
λ2





3 



1 − 

δ
π





2













1 ⁄ 2

 ×

× δ 



Γ exp 





τ

λ2



 − 1




 



Θ 




Γ  − 



3

2





1 ⁄ 2
 exp 




− 

τ
2λ2




 



1 − 

2δ
π








 − Θ 









3

2





1 ⁄ 2
 exp 




− 

τ

2λ2



 



1 − 

δ

π




 − Γ








 . (50)

We make use of the fact that the integrands in (50) contain Dirac δ-functions and realize integration with respect to
the variable λ, taking into account thereby (22)–(31). For Στ(Γ) we obtain

Στ (Γ) = 2 
1

Γ1 ⁄ 2
 exp 




− 

τ

 ln Γ




 
√ 6

π
 Θ 









3

2





1 ⁄ 2
 



1 − 

2δ

π




 Γ1 ⁄ 2 − Γ




 

τ1 ⁄ 2

2 ln Γ 3 ⁄ 2
 +

+ 2 
1

Γ1 ⁄ 2
 exp 




− 

τ

 ln Γ




 


3

πδ




1 ⁄ 2
 



1 − 

δ

π




 










1 − 
2 Γ

3 



1 − 

δ
π





2










1 ⁄ 2

 
τ1 ⁄ 2

2 ln Γ 3 ⁄ 2
 ×
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× 



Θ 




Γ  − 



3

2





1 ⁄ 2
 Γ1 ⁄ 2 




1 − 

2δ

π








 − Θ 









3

2





1 ⁄ 2
 Γ1 ⁄ 2 




1 − 

δ

π




 − Γ








 . (51)

Thus, the expression for the specific area of the isoscalar surface at the intermediate stage of evolution, where
the scalar-field dispersion constitutes 20% of its initial value, is of the form

Στ
(II)

 (Γ) = 

τ1 ⁄ 2 exp 



− 

τ

 ln Γ





Γ1 ⁄ 2  ln Γ 3 ⁄ 2
 ×

× 











√ 6

π
 Θ 



√ 3

2
 



1 − 

2δ
π




 − Γ 1 ⁄ 2




 + √ 3

πδ
 










1 − 
2Γ

3 



1 − 

δ
π





2











1 ⁄ 2
 ×

× 










Θ 







 Γ 1 ⁄ 2 − √ 3

2
 



1 − 

2δ
π











 − Θ 



√ 3

2
 



1 − 

δ
π




 − Γ 1 ⁄ 2


























 . (52)

3. Area of the Isoscalar Surface at the Final Stage of Evolution. In [14], which is devoted to the results
of direct numerical simulation, it is shown that at the final stage of evolution, where the scalar-field dispersion is of
the order of 5% of its initial value, the function describing the conditional scalar dissipation rate becomes parabolic
again with a minimum at small values of fluctuations. A typical realization of the scalar field corresponding to such a
situation is a curve slightly resembling a sinusoid but pointed so that the gradient maximum of this curve is realized
at values close to the maximum value of the scalar field. As the analytical expression for such a realization, we can
propose the following expression:

c3 (x, τ) = N (n) exp 



− 

τ

2λ2



 

sin 



x

λ








2n+1

 , (53)

where n is an integer. If we choose N(n) in the form

N (n) = √ (4n + 2) !!
2 (4n + 1) !!

 , (54)

the dispersion of the scalar field (53) will be

σ3 (τ) = 
1

√ 2
 exp 




− 

τ

2λ2



 . (55)

The scalar-gradient field is described by the derivative of (53):

z3 (x, τ) = 
(2n + 1) N (n)

λ
 exp 




− 

τ

2λ2



 cos 



x

λ



 

sin 



x

λ








2n

 . (56)

The maximum value of the scalar gradient is located close to the points with maximum values of the scalar
field (see Fig. 4). Therefore, it is hoped that the conditional dissipation rate calculated from this typical realization will
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have the form of a parabola with a maximum value at large values of scalar fluctuations. Direct calculation corrobo-
rates this proposal [15].

From the dependence of the field c3(x, τ) and its gradient z3(x, τ) it is seen that at a given level of the scalar
field c3(x, τ) = Γ the field gradient can assume, in a half-period, two values equal in magnitude but opposite in sign:

Wi (Γ) = % 
(2n + 1)

λ
 N (n) exp 




− 

τ

2λ2



 cos ϕi (Γ) [sin ϕi (Γ)]

2n
 ,   i = 1, 2 . (57)

The value of the angle ϕ1(Γ) can be calculated with the aid of formula (53). If we assume that c(x ⁄ λ) = Γ and
sin (x ⁄ λ) = sin ϕ1(Γ), then

ϕ1 (Γ) = arcsin

 





















Γ exp 



 

τ

2λ2




N (n)











 
1

2n+1

 









  

. (58)

For the conditional probability density of the scalar gradient, we can write

Pτ (WΓ)  = 
1
2

 Θ 










 1 − 











Γ exp 



 

τ

2λ2




N (n)











 
1

2n+1

 










  [δ (W − W1 (Γ))] + [δ (W + W1 (Γ))] . (59)

Taking into account formulas (58), the expression for W1(Γ) takes on the form

W1 (Γ) = 
2n + 1

λ
 N (n) exp 
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
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τ
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
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
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


τ

2λ2




N (n)










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(60)

or, upon transformations,

Fig. 4. Realization of the scalar field c(x, τ) and its gradient z(x, τ) at the final

stage of evolution 
σ(τ)
σ(0)

 C 0.05.

595



W1 (Γ) = 
2n + 1

λ
 N (n)

1
2n+1

 exp 



− 

τ

2λ2
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2
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




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 . (61)

Since for calculating Στ(Γ) only the value of the scalar gradient is important, instead of (59) we can propose
the following expression:

Pτ (WΓ)  = Θ 










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
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
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








  [δ (W − W1 (Γ))] , (62)

where the expression for W1(Γ) is given by (61). Using the formula for the isoscalar surface area in the single-scale
approximation, we obtain

Στ (Γ, λ) = 
1

2
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 . (63)

We now turn to the writing of the multiscale model of Στ(Γ) by using formula (20) for P(λ):

Στ (Γ) = (2n + 1) N (n)
1
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Taking into account the presence in the integrand of the Dirac δ-function and formulas (22)–(31), upon integration
with respect to λ, we obtain the expression for Στ(Γ):

Στ
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 (Γ) = (2n + 1) N (n)
1
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
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× 
τ1 ⁄ 2

2 ln Γ 3 ⁄ 2
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 . (65)

Thus, the expression for the specific area of the isoscalar surface at the final stage of evolution is of the form

Στ
(III)

 (Γ) = (2n + 1) N (n)
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
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 . (66)

Figure 5 shows the evolution of the specific area of the isoscalar surface at different stages of the scalar-
field development. As mentioned above, to the initial stage there corresponds the model described in Section 1 for
σ(τ) ⁄ σ(0) = 0.5 and time τ1 C 0.3, to the intermediate stage – the model described in Section 2 for σ(τ) ⁄ σ(0) = 0.2
and time τ2 C 0.7, and to the final stage – the model described in Section 3 for σ(τ) ⁄ σ(0) = 0.05 and time
τ3 C 1.9.

Conclusions. Comparing the form of the specific area of the isoscalar surface at the final stage of evolution
obtained in the present paper with the results of the solution of the closed system of equations for this function ob-
tained in [10], one can easily see the differences in the behavior of Στ(Γ) at small values of Γ. As seen from formula
(15) ,  the function Στ(Γ) is  a  result  of  the convolution of two functions:  Pτ(W Γ) and fτ(Γ),  i .e. ,
Στ(Γ D Pτ(WΓ)  fτ(Γ). The sharpening of the Στ(Γ) form in the course of the scalar-field evolution is due to the sharp-
ening of the single-point FPD fτ(Γ). This tendency is seen from Fig. 5. However, as shown in [14, 15], at the final
stage of the scalar-field evolution the behavior of the first factor in (15) becomes determining, since Pτ(WΓ)  → 0 at
Γ = 0. As a result, Στ(Γ) tends to zero at Γ = 0. This feature was not revealed in [10]. This work was supported by
the INTAS (project 001-353).

Fig. 5. Evolution of the specific area of the isoscalar surface Στ(Γ) at different
stages of the scalar-field development: 1) first model, τ1 = 0.3; 2) second
model, τ2 = 0.7; 3) third model, τ3 = 1.9.
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NOTATION

Στ(Γ), area of the flame surface; Q, heat release rate per unit area of the flame; ∆hτ, enthalpy; D, diffusion
coefficient; l, characteristic scale of length; τ, time; λ, scale of spatial inhomogeneity of L, λ = L ⁄ l; x, dimensionless
distance on the OX axis, x = X ⁄ l; Pτ(WΓ) , conditional probability density of the scalar gradient value; fτ(Γ), single-
point probability density of the scalar-field values; fτ(Γ, λ), single-point probability distribution function of the values
of scalar fluctuations; P(λ), distribution of length scales; σ(τ), scalar-field dispersion.
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